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ABSTRACT 

Explanations are recognized as an important facet of intelli- 
gent behavior. Unfortunately, expert systems are currently limited 
in their ability to provide useful, intelligent justifications of 
their results. We are currently investigating the issues involved 
in providing explanation facilities for expert planning systems. 
This investigation addresses three issues: knowledge content, 
knowledge representation, and explanation structure. 

Introduction 

An important characteristic of an intelligent system, whether 
human or computer, is the ability to explain or justify its-actions. 
Recognizing this fact, expert system developers were the first to 
regularly incorporate explanation facilities into their programs. 
t31. Unfortunately, early attempts at automated explanation pro- 
duced results that were significantly different from human explana- 
tions, both in organization and in information content. 

In large measure this was due to the methods which were used 
to model expert problem solving knowledge. Production rules, the 
m o s t  popular f o r m  o f  knowledge representation, proved to be an 
effective representation for generating solutions, but were less 
than satisfactory for generating explanations of those solutions. 
The domain principles and expertise which determined the organi- 
zation and content of the rule base were represented implicitly, 
i f  at all, and therefore could not be used to justify the system's 
behavior. 

Recent research has focussed on methods of improving the ex- 
planation capability of intelligent systems. ( ( 4 1 ,  161 ,  ( 9 1 ,  1101, 
[ill). A t  least three issues must be considered: first, identi- 
fication of the kinds of knowledge which constitute a useful expla- 
nation; second, determination of a representation formalism to make 
the knowledge readily accessible to the explanation generator; and 
third, methods for selecting and organizing the knowledge in order 
to present it in a meaningful format. 

This paper will address the first i s sue  in depth and will sug- 
gest an approach to the second. For a discussion of explanation 
organization, see [ 2 1 .  The explanation domain will be planning 
systems. 
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The Importance of Explanations 

There is a significant gap between what users would like to 
see in an explanation system and what is feasible in light of 
current theory and technology. Although researchers are working 
to close the gap, much remains to be done. 

A system that is able to explain its own behavior has several 
advantages over systems that lack this ability. For example, 
adequate explanation facilities can reassure skeptics that the 
system's reasoning processes are sound and its results are reliable. 
They can also serve a tutorial purpose. A properly constructed 
description of the strategy and domain principles used to derive a 
solution can provide insight which the user can then apply to 
other, similar, problems. The novice is thus encouraged to expand 
his knowledge of the domain, much as i f  he were working directly 
with a human expert. Explanations can be useful to knowledge 
engineers during the test and debug phase of system development, 
just as program traces are useful to a programmer under similar 
conditions ([ll, [ 6 1 ) .  In addition, good explanations can provide 
an automatic documenting capability. Finally, it can be argued 
that a system which contains the knowledge needed to produce good 
explanations can also be designed to use this information to 
improve its own performance in areas such as error recovery. 

Current State of Explanation Technology 

Explanation technology is severely limited in its ability to 
provide the benefits cited above. Explanations typically assume 
one of two forms: natural language traces of the rules currently 
under consideration or, less frequently, "canned text" inserted by 
the designer. 

Rule traces have some advantages. They provide an accurate 
record of the program's activity and are thus helpful for 
debugging the knowledge base and for showing when the program is 
being pushed beyond the limits of its ability. In addition, 
modifications to the rules are automatically reflected in the 
associated explanations, thereby insuring consistency. 
Explanations produced by paraphrasing rules suffer, however, from 
several defects. They are poorly structured, and often filled 
with low level operational details that are of little interest 
to the average user. More seriously, they are in general incapable 
of explaining causal relations, the rationale behind a solution, 
strategic issues, or anything about fundamental domain principles. 
The reason for this is that the knowledge required for deep 
explanations is not explicitly represented in the rules. Problem 
solving strategy and domain relations are implicit in the clause 
ordering of rule concepts, and the principles which justify the 
rules and strategy are missing altogether. 

Canned text explanations can be used to annotate individual 
rules or groups of rules, but this approach lacks the flexibility 
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which is needed for a full scale explanation system. It is diffi- 
cult to anticipate every explanation which may be required. In 
addition, there is no guarantee that changes to the program code 
will be reflected in changes to the associated explanations, since 
there is no automatic connection between the two. 

In summary, it is apparent that the current state of explana- 
tion technology falls far short of that which may be desired. The 
following sections will examine the kinds of questions that a good 
explanation system might reasonably be expected to address, and 
identify the knowledge needed to respond to these questions. For 
background, a discussion of the planning domain will be presented. 

The Planning Domain 

This paper addresses explanation generation in the context 
of expert planning systems. Previous explanation research has 
concentrated on diagnostic expert systems, primarily in the 
areas of medicine and electronic trouble shooting. An important 
consideration is whether these findings can be extended to other 
domains, such as planning. A comparison between planning systems 
and diagnostic systems will help to answer this question. 

Simply stated, an expert planner is a system that generates 
a sequence of steps which, when applied from a given starting 
state, will produce the desired goal state. Some systems are 
interactive, so that feedback during plan execution can influence 
future planning decisions. In traditional planners, often called 
strategic planners, it is more commonly the case that plan 
generation and plan execution are two distinct processes. Robot 
problem solvers and automatic programming are two common 
application domains for planning systems. 

The individual steps in a plan are produced by plan operators, 
which describe the legal actions or events that can occur in the 
application domain. Operators are typically described by a set of 
preconditions, which determine when an operator can legally be 
applied, and a set of postconditions, which describe the operator's 
effect on the world state. Operator descriptions may also include 
additional information such as procedures for accomplishing de- 
sired effects, ordering constraints, and resource requirements. 

The planning process consists of choosing appropriate opera- 
tors and ordering them to achieve the goals which constitute the 
final state. Early planners were linear; that is, they developed 
a sequence of steps to achieve each individual goal in order. At 
every point in the planning process the plan was fully detailed, 
but complete only to that point. STRIPS ( 7 1  is the most familiar 
example of a linear planner. 

Hierarchical planners, on the other hand, start with a high 
level representation of the entire plan and refine it through 
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several levels of abstraction to arrive at the final sequence of 
primitive operators. A feature frequently associated with 
hierarchical planners is partial ordering of actions. Non- 
hierarchical planners are often forced to make arbitrary ordering 
decisions in order to maintain the linear nature of the incomplete 
plan. Hierarchical planners postpone committment until it is 
clear that the committment will not have to be undone at some 
later stage. NOAHl81, NONLIN[lZI, and SIPEl131 are hierarchical 
planners. 

A third paradigm is case-based or script-based planning. 
This approach relies on a library of existing skeletal plans 
which are adapted to new situations by various refinement and 
"debugging" techniques. HACKER and MOLGENlSI are two examples of 
planners that fit this paradigm. 

Comparison of Planning Systems and Diagnostic Systems 

Comparison of planning systems and diagnostic systems 
suggests several parallels that can be exploited to transfer 
explanation theory from the diagnostic domain to the planning 
domain. Two that will be investigated here are the knowledge 
bases and the inferencing processes. 

The knowledge of a typical diagnostic system is encoded in 
production rules, a simple, flexible formalism for representing 
expert reasoning. Rules consist of two parts: the premise, 
typically a conjunction of clauses, and the conclusion, or goal. 
The conclusion can be established by proving that the clauses 
in the premise are true. This may be done by gathering evidence 
directly or by proving other rules which have the same clauses 
as goals. Thus the knowledge base can be viewed as a hierarchi- 
cal network with implicit links between goals and premises. 

The operators in a planning system serve a function analagous 
to that of production rules in the sense that they contain the 
necessary problem solving knowledge. The analogy can be extended 
to structural aspects of the knowledge as well. An operator's 
preconditions (premises) must be satisfied in order to achieve 
the desired postconditions (goal). Satisfying preconditions can 
be accomplished by applying other operators with the appropriate 
postconditions, thus giving the set of defined operators a net- 
work structure. 

Inference in expert systems is accomplished by rule chaining. 
Depending on its design, a system may chain backward from a sus- 
pected diagnosis to known evidence, or it may chain forward from 
the evidence to a diagnosis. 

Planners, particularly those based on the hierarchical para- 
digm, may use problem reduction as an inference technique. The 
method is to first express a plan as a sequence of high level goals 
and then to refine each abstract goal into a set of more concrete 
subgoals. The refinement process can be repeated as often as is 
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necessary to produce the final sequence of primitive actions. As 
an alternate, a planner might employ means-ends analysis. This 
approach involves a comparison between the current state and the 
goal state. Wherever differences are detected, operators are 
selected to reduce the differences. This is also an iterative 
process. 

Plan derivation and diagnosis differ in the details of how 
the appropriate operators or rules are selected but the effect 
of the selection process is similar in both cases. At any point 
during the inferencing process there exists a stack of goals, 
implicit or explicit, which must be realized. An achieved solution 
represents a path through the network of rules or operators. For 
planning systems the path is equivalent to the plan; for diagnostic 
systems it represents the chain of reasoning that led to a specific 
diagnosis. 

The solution produced by a planning system is more complex 
than the solution produced by a diagnostic system. A plan is a 
structured entity consisting of an ordered sequence of steps, while 
a diagnosis consists of a single entity. In addition, many planners 
operate in dynamic, multi-agent domains. They must plan simulta- 
eous actions, prevent harmful interactions between competing agents, 
and consider the effects of actions over which they have no direct 
control. It is reasonable to expect that this added complexity will 
cause a corresponding increase in the complexity of the associated 
explanation. The next section will expand on this premise through 
a discussion of the epistemological issues of explanation theory as 
applied to expert planners. It will first outline some of the 
issues that must be addressed by an explanation system and will 
then present a taxonomy of explanation related knowledge. 

The Epistemology of Explanations 

A good explanation facility should be flexible enough to meet 
the needs of domain experts, novice users, and system designers. 
The following items illustrate the kinds of questions that it might 
be expected to address. 

Domain Facts, Principles, and Terminology 
Terminology is important as a foundation for understanding 
higher level explanations. Principles describe the problem 
solving procedures which can be used to achieve a goal. In 
well defined domains most facts can be expressed as causal 
relations, while in less formalized domains, empirical 
associations and heuristics play an important role. 
Comparisons and Choices 
Explaining why one action is preferable to another is a 
difficult task. Such decisions may be predicated on an 
accumulation of prior evidence, or on anticipation of future 
effects. In general, this kind of explanation requires a 
knowledge of constraints, interactions between events, and 
ultimate goals. 
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- Justification 
Justifying a single step in a plan can be as simple at stating 
a causal relationship or as complicated as explaining a choice. 
Justifying an entire plan may require the system to identify 
strategies, constraints, priorities, resource restrictions, and 
temporal issues. 

Questions about methodology refer to the mechanics by which a 
particular solution was obtained. 

- General Strategy 
In addition to specific methods, most problem solvers also rely 
on abstract principles and weak methods to guide the problem 
solving process. 

- Methodology 

No system has yet been able to respond to all of these issues. 
Expert systems have traditionally answered questions about 
methodology by paraphrasing a chain of executed rules. In 
planning systems, a similar effect can be achieved by showing how 
operators in a general procedure have been instantiated with case- 
specific data. MYCINI31 had a limited ability to compare 
alternative drug therapies. In NEOMYCIN Clanceyi'll and Haslinq 
et a1 I61 extended the explanatory capabilities of MYCIN by 
incorporating meta-rules to provide information about strategy. 
Shulman and Hayes-Roth(91 designed an explanation module to provide 
justifications and feasibility evaluations for certain knowledge 
systems where the reasoning was controlled by a strategic plan. In 
general, however, most systems lack the deep knowledge required to 
provide a broad range of explanations. 

The remainder of this section identifies the kinds of know- 
ledge needed for plan explanation. This identification is based on 
previous explanation research from the diagnostic domain, as well 
as on the specific needs of the planning domain. For purposes of 
discussion, the knowledge will be classified as either meta- 
knowledge (knowledge about knowledge), domain knowledge, or case- 
specific knowledge. 

- Meta-Knowledge 

Meta-knowledge embodies knowledge about control strategy and 
problem solving techniques. 
might be classified as domain knowledge, the guidelines used to 
choose between competing strategies fall into the category of 
meta-knowledge. Many of the so-called "weak methods" can also be 
categorized this way. Examples of meta-knowledge are "Look for 
common causes for a device malfunction before looking for unusual 
causesf1 or "Avoid ordering plan operators until there is a reason 
to do so.tg 

While a specific method or strategy 

It is not clear that there are principles which are applicable 
to every planning domain. For example, a linear planner might 
employ the principle "Order plan operators arbitrarily if no 
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information exists; modify later if  necessary" instead of the 
"avoid ordering" principle cited earlier. It is clear, however, 
that every planning system operates on a set of general strategic 
principles which may, in fact, have wide application. 

Some illustrations of these general strategies may be found 
in the literature. Swartout[lOl, for example, recommends the use 
of tttradeof fs" and I@preferences@', where tradeoffs indicate the pros 
and cons of selecting a particular goal-achieving strategy and 
preferences are used to prioritize goals. Planners in multi-agent 
domains that permit parallel actions have devised methods for re- 
solving the conflicts that arise when actions in one branch of a 
plan interfere with actions in another branch[l31. System designers 
must identify the abstract principles that guide their own problem 
solving and incorporate them into the meta-level knowledge structure. 
In order to provide good explanations of general strategy and to 
justify final plans it is important that the information be 
represented explicitly. 

- Domain Knowledge 

Without domain knowledge, it is impossible to explain termi- 
nology, principles, and domain facts. It is also difficult to fur- 
nish justifications and explanations of general principles unless 
domain specific information is available. Both declarative and 
procedural knowledge are required here. Declarative knowledge 
encompasses terminology and factual information, while procedural 
knowledge expresses how goals can be accomplished. Swartout and 
Smoliar 1111 discuss the need for terminological, domain descrip- 
tive, and problem solving knowledge in the context of EES, an 
expert system which diagnoses cardiac difficulties and prescribes 
digitalis therapy. Their structure is sufficiently general to 
apply to planning as well as diagnostic domains. 

The terminology of a planning system includes all domain 
concepts. Physical objects, their properties, and relations among 
objects such as t*on-top-oftl or *Igreater-thant1 must be defined in 
terms of system primitives. Factual knowledge can be represented 
as assertions of causal relations or probabilistic associations. 
Certain types of constraints which control the temporal ordering 
of operators and specify harmful or helpful interactions may also 
be represented this way. 

Procedural or strategic knowledge in intelligent planners 
involves the selection and ordering of plan operators. The appli- 
cation of domain strategies is subject to control by meta-level 
knowledge and is, at the same time, dependent on case-specific 
information that can activate constraints and ordering rules. To 
be fully explainable, strategies must also be supported by a 
rationale based on domain facts. 

- Case-Specific Knowledge 

Every instance of a planner's operation begins with a speci- 
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fication of the initial world state, the desired goal state, and 
a list of constraints, availabe resources, and other pertinent 
information. Using meta-level and domain strategies, the planner 
then generates a sequence of steps which describe how to achieve 
the goal. The final plan consists of these steps, instantiated to 
satisfy the initial specifications. 

While the plan itself may be used to explain methodology, 
much as a traditional diagnostic system uses its rule chain to 
explain its diagnosis, it is necessary to keep a case history of 
the problem-solving process in order to provide deep explanations. 
At a minimum, the case history must include the procedures used, 
choices made, and the reasons for those choices. 

As has been previously noted, some choices occur when the 
planner is forced to decide among two or more operators. Other 
decisions determine the ordering of plan steps. Diagnostic systems 
use certainty factors or other numerical weights as an aid when 
making similar decisions. Quantitative values do not contain 
enough information to generate satisfactory explanations, however, 
nor are they always appropriate in the planning domain. Planninq 
decisions result from a combination of constraints, goal priorities, 
resource availability, or the knowledge that one or more of the 
options would interfere with the achievement of some future goal. 
This is the type of knowledge that must be kept in the case history. 

It should be clear from the preceding discussion that there 
is no absolute boundary separating meta-knowledge, domain know- 
ledge, and case-specific knowledge. Furthermore, there are 
situations where it is necessary to integrate information from 
more than one knowledge level to produce an adequate explanation. 
The next section will investigate methods of structuring planning 
knowledge to make it accessible to the explanation generator. 

Representation Issues 

The knowledge required to explain plans is, on the whole, the 
same knowledge that is required to generate the plans. Previous 
intelligent systems have made much of this knowledge unavailable 
for explanation generation. The problem now is to develop repre- 
sentation formalisms that will make the information explicit with- 
out unduly affecting the efficiency of the plan generator. A 
completely developed representation scheme is beyond the scope of 
this paper. Instead, it will concentrate on outlining a general 
knowledge structure to guide future research. 

Domain terminology is best represented as a type hierarchy of 
nodes. The highest levels of the hierarchy serve as an index to 
domain concepts, while the lowest level can be instantiated with 
case-specific data. Individual nodes have attributes which can be 
either pointers to other nodes, definitions, or other properties. 
The pointers define the hierarchy and permit property inheritance. 
Attributes describe concept features and may be used to record 
constraints on the values of plan variables. 
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Operators also have a natural hierarchical structure. Abstract 
operators encode meta-level strategies which in turn invoke domain 
procedures. A t  the bottom of the hierarchy are the primitive opera- 
tors which define individual plan steps. In addition to parameters, 
pre-conditions, and post-conditions, operators should include 
information about constraints, resources, and rationales. Con- 
straints may apply to variable values or to temporal ordering. 
Resource requirements describe the domain resources needed to per- 
form the step and the duration for which the resources must be 
available. The rationale may state that the operator is necessary 
in order to establish some condition needed for a future action or 
it may provide a causal justification for the process invoked. 

The case history records the refinement process by which the 
plan was generated, giving it, too, a hierarchical structure. The 
highest levels contain information about meta-level decisions, such 
as options between alternative strategies. Intermediate levels are 
concerned with domain dependent choices. The lowest level corre- 
sponds to the actual steps of the plan. Nodes in the history are 
instantiated with case-specific data, where appropriate. Choice 
nodes can be annotated with reasons that justify the choices- For 
explanation purposes it is vital that the domain facts and defi- 
nitions that motivated the choices be represented. The structure 
will then contain all knowledge needed to justify the plan. 

6. Conclusion 

Explanation theory is just beginning to move beyond the narrow 
scope of early efforts. Providing intelligent responses to a 
variety of questions requires a full and explicit representation 
of the knowledge involved. The hierarchical nature of knowledge 
in an expert planning system enables the planning process to be 
explained on many levels of abstraction. Systems which rely pri- 
marily on the knowledge embedded in low-level rules forfeit this 
opportunity. Building the knowledge bases required for adequate 
explanations is no small task, It is an activity that requires 
careful attention from domain experts and knowledge engineers 
alike. The result of this effort, however, is a system that will 
be more responsive to the needs of its users. 
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